# VIBRATIONAL SPECTRA OF AQUADIOXOTETRA; PEROXODIVANADATES(V) $M_2[V_2O_2(O_2)_4(H_2O)].xH_2O$ (M = N(CH<sub>3</sub>)<sub>4</sub>, Cs)

Peter SCHWENDT and Milan SÝKORA

Department of Inorganic Chemistry, Faculty of Sciences, Comenius University, 842 15 Bratislava

> Received September 12, 1989 Accepted November 14, 1989

The infrared and Raman spectra of  $M_2[V_2O_2(O_2)_4(H_2O)].xH_2O$  and  $M_2[V_2O_2(O_2)_4(D_2O)].xD_2O$  ( $M = N(CH_3)_4$ , Cs) were measured. In the region of the vanadium-oxygen stretching vibrations, the spectra were interpreted based on normal coordinate analysis, employing empirical correlations between the bond lengths and force constants.

Although vanadium(V) peroxo compounds have been investigated for nearly 150 years<sup>1</sup>, until recently no consensus existed concerning the structure of the products isolated from weakly acid aqueous solutions of peroxovanadates(V). These products are unstable and mostly X-ray-amorphous. The different formulations of, e.g.,  $MH_2VO_2(O_2)_2$  (ref.<sup>2</sup>),  $MVO_5$ .aq (ref.<sup>3</sup>), or  $M_2H_2V_2O_{11}$  (ref.<sup>4</sup>) relied on the results of chemical analysis while lacking any structure verification, by spectral methods at least. The X-ray-amorphous potassium salt has been formulated as  $K[VO(O_2)_2$ .  $(H_2O)]$  primarily based on the infrared spectra and the assumed structure of the anion in solution<sup>5</sup>. Recently, crystalline peroxovanadates(V) were prepared from weakly acid solutions at our laboratory. X-ray analysis of the tetramethylammonium<sup>6</sup> and potassium<sup>7</sup> salts gave evidence that the substances can be written as  $M_2[V_2O_2$ .  $(O_2)_4(H_2O)].xH_2O$ . The dinuclear complex anion possesses two atypical features, viz. asymmetry (the two coordination polyhedra are different) and a tridentate  $\mu$ -peroxo group (Fig. 1).

The vibrational spectra of monomeric vanadium(V) peroxo complexes have been interpreted by using the Wilson GF approach employing empirical correlations between the bond length and the force  $constant^{8-10}$ ; a satisfactory fit to the experimental data has been thereby achieved.

In the present work, this procedure is applied to more complex species. The asymmetric  $[V_2O_2(O_2)_4(H_2O)]^2^-$  anion, with a variable V—O bond length, is a suitable object for testing the applicability of the above approach.

## EXPERIMENTAL

Substances.  $(N(CH_3)_4)_2[[V_2O_2(O_2)_4(H_2O)].2 H_2O$  was prepared following the procedure<sup>6</sup>.  $Cs_2[V_2O_2(O_2)_4(H_2O)].H_2O$  was synthesized by dissolving 0.58 g (2.5 mmol) of CsVO<sub>3</sub> in 5 ml of water and 5 ml of 30% H<sub>2</sub>O<sub>2</sub> at 0°C. After filtering, 3 ml of cool ethanol and several drops

## TABLE I

Experimental and calculated vibrational wavenumbers for  $[V_2O_2(O_2)_4H_2O]^2$ 

| $\tilde{v}_{exp}^{a}$ $v_{calc}$<br>cm <sup>-1</sup> cm <sup>-1</sup> |      | PED <sup>b</sup><br>% |                    | Assignment     |  |
|-----------------------------------------------------------------------|------|-----------------------|--------------------|----------------|--|
| <br>973                                                               | 979  | 88(1                  | 6)                 | $\nu(V=0)$     |  |
| 960                                                                   | 968  | 98(8                  | )                  |                |  |
|                                                                       | 903  | 92(3                  | )                  | $v(O_n - O_n)$ |  |
| 885                                                                   | 885  | 92(1                  | <i>4</i> )         | < р р/         |  |
| 867                                                                   | 884  | 91(6                  | )                  |                |  |
| 859                                                                   | 880  | 94(1                  | 1)                 |                |  |
|                                                                       | 666  | 51(4), 24(5           | ), 17(7)           | $v(V-O_{p})$   |  |
| 642                                                                   | 639  | 32(10), 29(1          | 5), 26(13)         | P              |  |
| 619                                                                   | 613  | 32(12), 25(1          | 3), 23(15)         |                |  |
|                                                                       | 604  | 40(7), 23(5           | ), 19(2)           |                |  |
| 533                                                                   | 546  | 41(1                  | 2), 32(13)         |                |  |
| 523                                                                   | 536  | 32(7), 29(2           | ), 27(4)           |                |  |
|                                                                       | 496  | 24(5), 22(1           | 0), 16(15)         |                |  |
| 495                                                                   | 495  | 24(10), 20(5          | ), 17(2)           |                |  |
| 403                                                                   | 408  | 73(9),                | 15(1)              | $v(V-OH_2)$    |  |
| 392 <sup>c</sup>                                                      | 397° | $48(9)^{c}$           | 43(1) <sup>c</sup> | $v(V-OD_2)$    |  |
| 376                                                                   | 385  | 72(1                  | )                  | $v(V-O_n)_h$   |  |

<sup>a</sup> Infrared spectra; <sup>b</sup> potential energy distribution, contributions being higher than 15%, numbers of internal coordinate according to Fig. 1 are given in parentheses; <sup>c</sup> data for  $[V_2O_2(O_2)_4D_2O]^2^-$ .



Fig. 1

Structure of anion in the  $(N(CH_3)_4)_2$ .  $[V_2O_2(O_2)_4(H_2O)].2 H_2O$  complex. The numbers attached to the bonds are bond lengths in pm, the internal coordinate numbering is given in parentheses

Collect. Czech. Chem. Commun. (Vol. 55) (1990)

TABLE II

of  $H_2SO_4$  ( $c = 1 \text{ mol } l^{-1}$ ) were added to make the solution clear, and the latter was allowed to crystallize at  $-25^{\circ}C$ . In several days, light-yellow hexagonal crystals of the substance were isolated, rinsed with ethanol and dried at  $-25^{\circ}C$ . Chemical analysis: calculated: 17.93% V, 22.90%  $O_2^{2^-}$ ; found: 18.07% V, 22.71%  $O_2^{2^-}$ .

 $(N(CH_3)_4)_2[V_2O_2(O_2)_4(D_2O).2 D_2O]$  and  $Cs_2[V_2O_2(O_2)_4(D_2O)].D_2O$  were prepared likewise using  $D_2O_2$  and  $D_2SO_4$  in  $D_2O$ , and also  $C_2D_5OD$  (Isocommerz, G.D.R.).

Spectral measurements. Infrared spectra were scanned over the  $4\,000-200\,\mathrm{cm}^{-1}$  region on a Specord M-80 grating spectrophotometer (Carl Zeiss, Jena, G.D.R.). The substances were measured in Nujol mulls using KBr ( $4\,000-400\,\mathrm{cm}^{-1}$ ) and polyethylene ( $500-200\,\mathrm{cm}^{-1}$ ) windows.

Raman spectra of the solid complexes were measured on a JEOL JRS 1 instrument equipped with a He-Ne laser (monochromatic power at sample 18 mW).

Normal coordinate analysis of the  $[V_2O_2(O_2)_4(H_2O)]^2$  anion in the tetramethylammonium complex (dihydrate) was performed in terms of the Wilson GF matrix method in the point

| IR     |        | Raman  |        |                               |
|--------|--------|--------|--------|-------------------------------|
| Н      | D      | Н      | D      | - Assignment                  |
| 973 s  | 975 s  | 977 s  | 978 s  | v(V=0)                        |
| 960 s  | 959 s  | 958 sh | 952 sh |                               |
| 937 vs | 936 vs | 931 s  | 934 s  | a                             |
| 885 s  | 886 s  | 889 s  | 891 s  | $\nu(O_{n}-O_{n})$            |
| 867 vs | 870 vs | 875 sh | 873 sh | F F                           |
| 859 sh | 860 w  | 859 sh | 864 w  |                               |
|        |        | 753 m  | 755 m  | а                             |
| 642 s  | 639 s  |        |        | $v(V-O_p)$                    |
| 619 s  | 621 vs | 624 m  | 627 m  | r                             |
| 609 m  | 427 w  | 608 m  |        | $\varrho_{\rm w}({\rm A_2O})$ |
| 533 w  | 535 sh | 532 vs | 533 vs | $v(V-O_p)$                    |
| 523 m  | 529 m  |        |        | -                             |
| 495 w  | 496 w  | 492 m  | 496 m  |                               |
| 469 w  | 470 w  |        |        | а                             |
| 460 m  | 461 m  | 459 m  | 461 m  | а                             |
| 403 w  | 392 w  |        |        | $\nu$ (V-OA <sub>2</sub> )    |
| 376 w  | 373 w  | 371 w  | 373 w  | $\nu(V-O_p)_{b}$              |
| 332 m  | 333 m  | 328 s  | 328 s  | deformatio                    |
| 310 sh | 310 sh |        |        | vibrations                    |
| 247 m  | 248 m  | 261 m  | 263 m  |                               |
| 226 w  | 227 w  | 223 m  | 224 m  |                               |

<sup>a</sup> Vibrational bands of cation.

Collect. Czech. Chem. Commun. (Vol. 55) (1990)

model approximation for  $H_2O$  ( $D_2O$ ). The G matrix was calculated using the structure data from ref.<sup>6</sup>. Only the internal stretching coordinates were considered; their numbering and bond lengths are shown in Fig. 1.

The force constants for the V–O and O–O bonds were derived based on the empirical correlations between the bond length and the force constant<sup>8</sup> and were used in the treatment without further refinement. From among the interaction force constants, only the  $f(VO_p, VO_p)$  and  $f(VO_p, O_pO_p)$  bond-bond interactions (O<sub>p</sub> is peroxide oxygen) were taken into account. Negative values, corresponding to the assumed electron density transfer from the  $O_2^{2-}$  ligand to the central atom<sup>8</sup>, were used for these force constants in the anion studied, as was the case with other peroxovanadates(V) too.

The values of the force constants, in N m<sup>-1</sup>, were as follows (the bond numbers in Fig. 1 are given in parentheses): f(V=O) 665 (8), 650 (16);  $f(V=O_p)$  280 (4), 270 (7, 13, 15), 260 (5, 10, 12), 220 (2);  $f(O_p=O_p)$  370 (3), 360 (6, 11, 14);  $f(V=O_p)_b$  135 (1);  $f(V=OH_2)$  145 (9);  $f(VO_p=VO_p) - 20$ ;  $f(VO_p=O_pO_p) - 20$ .

| TABLE III           |                                        |    |    |
|---------------------|----------------------------------------|----|----|
| Vibrational spectra | of $Cs_2[V_2O_2(O_2)_4A_2O].A_2O$ (A = | H, | D) |

| IR     |        | Raman  |        | • •                                   |
|--------|--------|--------|--------|---------------------------------------|
| Н      | D      | Н      | D      | - Assignment                          |
| 993 m  | 993 s  | 994 vs | 993 vs | v(V==0)                               |
| 978 vs | 980 vs |        |        |                                       |
| 960 s  | 961 vs | 966 m  | 970 m  |                                       |
| 893 s  | 895 vs | 896 s  | 895 s  | $v(O_{n}-O_{n})$                      |
| 885 m  | 883 s  | 885 m  | 882 s  | , , , , , , , , , , , , , , , , , , , |
| 875 w  | 874 m  |        |        |                                       |
| 855 vs | 855 vs | 860 m  | 862 m  |                                       |
| 675 sh |        |        |        | $\rho_{w}(H_{2}O)?$                   |
| 645 s  | 643 s  | 644 sh | 644 sh | $v(V-O_p)$                            |
| 625 sh | 626 sh | 626 sh | 628 sh |                                       |
| 619 m  | 616 m  | 610 s  | 612 s  |                                       |
| 608 vs | 607 vs |        |        |                                       |
| 520 m  | 520 m  | 530 vs | 530 vs |                                       |
|        |        | 484 m  | 483 m  |                                       |
| 464 s  | 464 s  | 462 s  | 462 s  |                                       |
| 401 w  | 400 w  | 403 s  | 400 s  | $v(V-O_p)_b$                          |
| 347 m  | 348 m  | 350 sh | 350 sh | deformation                           |
| 340 sh | 338 m  | 340 s  | 342 s  | vibrations                            |
| 302 m  | 304 m  | 320 m  | 320 m  |                                       |
| 280 sh | 280 w  | 286 w  | 284 w  |                                       |
| 256 m  | 256 m  | 256 w  | 256 w  |                                       |
|        |        | 239 w  | 240 w  |                                       |
|        |        | 208 sh | 209 sh |                                       |

Collect. Czech. Chem. Commun. (Vol. 55) (1990)

#### **RESULTS AND DISCUSSION**

The calculated and observed vibrational wavenumbers, a ong with the potential energy distribution data, are given in Table I. The satisfactory agreement between the experimental and calculated data gives evidence that the empirical correlations between the bond lengths and force constants suit well for estimating the stretching vibration wavenumbers in vanadium(V) peroxo complexes. A good agreement was also achieved for the  $v(V-OH_2)$  stretching vibrations, where the correctness of the assignment was confirmed by the band shift accompanying the H  $\rightarrow$  D isotopic substitution; the experimental and calculated shifts are both about 10 cm<sup>-1</sup>. The lower shift as compared to the expected value of 20 cm<sup>-1</sup> (ref.<sup>11</sup>) is apparently related with the different contribution of the  $\Delta(V-O_p)_b$  internal coordinate (Fig. 1, coordinate No. 1) to the potential energy for this normal vibration, viz. 15% for  $[V_2O_2(O_2)_4(H_2O)]^{2-}$  and 43% for the perdeuterated analogue (Table I).

The vibrational spectra over the  $1000-200 \text{ cm}^{-1}$  range (Tables II and III, Figs 2 and 3) contain a relatively high number of bands, which is consistent with the asym-





Fig. 2

Infrared spectra of  $(N(CH_3)_4)_2[V_2O_2(O_2)_4.$ . $(H_2O)].2 H_2O$  (1) and  $(N(CH_3)_4)_2[V_2O_2.$ . $(O_2)_4(D_2O)].2 D_2O$  (2). N Nujol, **q**  $\varrho_w(A_2O)$ , H  $v(V-OH_2)$ , D  $v(V-OD_2)$ 



Raman spectra of solid  $(N(CH_3)_4)_2[V_2O_2.$ . $(O_2)_4(H_2O)].2 H_2O$  (1) and  $(N(CH_3)_4)_2.$ . $[V_2O_2(O_2)_4(D_2O)].2 D_2O$  (2)

metric structure of the anion. In addition to the v(V=O),  $v(O_p-O_p)$ ,  $v(V-O_p)$ and  $v(V-OH_2)$  bands, the spectra exhibit many bending vibration bands; the tetramethylammonium complex displays also bands belonging to the cation. The spectra contain besides the  $v(V-OH_2)$  band an additional band which is shifted on deuteration (from 609 to 427 cm<sup>-1</sup> for the tetramethylammonium complex); this band can be attributed to a bending vibration of coordinated water ( $\varrho_w$ ?) or to a libration of crystal water.

The bands of the  $N(CH_3)_4^+$  cation occur where they have been expected (see e.g., ref.<sup>12</sup>).

#### REFERENCES

- 1. Connor J. A., Ebsworth E. A. V.: Adv. Inorg. Chem. Radiochem. 6, 279 (1964).
- 2. Fuchs J., Jahr K. F., Palm R.: Z. Naturforsch., B 22, 1222 (1967).
- 3. Vorobeva N. A., Bogdanov G. A., Yurchenko G. K.: Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol. 13, 1242 (1970).
- 4. Beltran Martinez J.: An. Real. Soc. Espan., Fis. Quim. (Madrid), B 52, 105 (1956).
- 5. Schwendt P., Petrovič P., Úškert D.: Z. Anorg. Allg. Chem. 466, 232 (1980).
- Lapshin A. E., Smolin Yu. I., Shepelev Yu. F., Gyepesová D., Schwendt P.: Acta Crystallogr., C 45, 1477 (1989).
- 7. Lapshin A. E., Smolin Yu. I., Shepelev Yu. F., Schwendt P., GyepesováD.: Acta Crystallogr., in press.
- 8. Schwendt P., Volka K., Suchánek M.: Spectrochim. Acta, A 44, 839 (1988).
- 9. Schwendt P., Volka K.: Proc. 11th Conf. Coord. Chem., Smolenice-Bratislava 1987; p. 339.
- 10. Schwendt P., Volka K.: Acta Fac. Rerum. Nat. Univ. Comen., Chimia in press.
- 11. Adams D. M., Lock P. J.: J. Chem. Soc., A 1971, 2801.
- 12. Bukovec P,. Milićev S., Demšar A., Golič L.: J. Chem. Soc., Dalton Trans. 1981, 1802.

Translated by P. Adámek.